Highest vectors of representations (total 2) ; the vectors are over the primal subalgebra. | \(g_{5}+g_{4}\) | \(g_{2}\) |
weight | \(\omega_{1}\) | \(2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}} \) → (1, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2) | |||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | |||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Semisimple subalgebra component.
| |||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | |||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{0}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | |||||||||||||||||
Isotypic character | \(\displaystyle M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{0}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) |